Alkynes as Stille Reaction Pseudohalides: Goldand Palladium-Cocatalyzed Synthesis of Tri- and Tetra-Substituted Olefins

$$\begin{array}{c|c} R_2 \\ \hline & Au(I)/Pd(0) \\ \hline & CO_2R_1 \end{array} \qquad \begin{array}{c|c} Au(I)/Pd(0) \\ \hline & Bu_3SnR_3 \\ \hline & Bu_3Sn CO_2R_1 \end{array}$$

Yili Shi, Sonja M. Peterson, Walter W. Haberaecker III, and Suzanne A. Blum

J. Am. Chem. Soc., 130 (7), 2168 -2169, 2008

Current Literature
Chenbo Wang @ Wipf Group
2/16/2008

Carbometallation of Alkynes -General Concepts

- A powerful way to make stereospecifically substituted alkenes.
- M can be Cu, Al, Zr, Ti, Zn, B, Mg, Li or a combination of two.
- Syn or anti selectivity depends on the nature of substrate, reagent and reaction conditions.
- Regioselectivity depends on the polarity of the triple bond, steric factor and complexation by the functional groups of the alkyne.
- Polyaddtitions: the product may add to the starting alkyne, resulting polymerization.

For a review, see: Normant, J. F.; Alexakis, A. Synthesis 1981, 841.

Carbometallation of Alkynes -Organocopper Reagents

•Unfunctionalized Terminal alkynes: Markownikov rule

$$R_1 \longrightarrow R_1 \longrightarrow R_2$$
 $R_2 \text{Cu} \cdot \text{MgX}_2$
 $R_2 \text{Cu} \cdot \text{MgX}_2$

•Functionalized alkynes: directed carbometallation

$$= -(CH_2)_n - X \xrightarrow{RCu \cdot MHal} \xrightarrow{RCu \cdot MHal} \xrightarrow{RCu \cdot MHal}$$

$$n = 0, 1, 2, 3$$

X = halogen, SR, OR, O⁻, NR₂, OAc

Synthetic Use of Alkenylcopper(I) Derivatives

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_3
 R_4
 R_2
 R_3
 R_3
 R_4
 R_4
 R_5
 R_5
 R_7
 R_8
 R_9
 R_9

Carbometallation of Alkynes -Organoaluminum Reagents

Complementary to the organocopper reagents

Negishi, E. et al. Chem. Soc. Rev. 1996, 96, 417

Carbometallation of Alkynes -Other Metal Reagents

•Organozinc reagents: propagylic, allylic and malonic type organozinc reagents are tolerated

- •Organolithium reagents: mostly intramolecular examples
- Organomagnesium reagents: Often used with catalytic Cu salt
- •Organoboron reagents: require exceptionally reactive substrates

Previous Work on the Carbometallation of Alkynes Catalyzed by Palladium

$$R^{1}I + R^{2} = R^{3} + R^{4}B(OH)_{2} \xrightarrow{cat. Pd} R^{1} = R^{3}$$

Zhou, C.; Larock, R. C. J. Org. Chem. 2005, 70, 3765

Previous Work on the Carbostannylation of Alkynes Catalyzed by Palladium

$$R^{1}C=CR^{2}$$
 + R-SnBu₃ [Pd₂Cl₂(η^{3} -C₃H₅)₂]/2a (0.05 mol amt of Pd, Pd/2a = 1) toluene
3a: R¹ = H, R² = CO₂Et 3b: R¹, R² = CO₂Me

Dimerization predominates.

Title Paper: Carbostannylation Catalyzed by Palladium and Gold

Without Au(I)

Filled metal molecular orbitals alkyne π* of Pd-backbonding to alkyne

With Au(I)

Filled metal molecular orbitals alkyne π* orbital to alkyne

Collman, J. P. et al Principles and Applications of Organotransition Metal Chemistry; University Science Books: Sausalito, CA, 1987; pp 155, 645-647

Optimization of Reaction Conditions

Table 1. Effect of Catalyst Composition on Product ¹H NMR Yield

entry	Lewis acid	Pd cat.	¹ H NMR yield (%)
1	PPh ₃ AuCl	Pd ₂ (dba) ₃	24
2	PPh ₃ AuCl/AgSbF ₆ (1:1)	$Pd_2(dba)_3$	51
3	PPh ₃ AuCl/AgSbF ₆ (1:2)	$Pd_2(dba)_3$	33
4	PPh ₃ AuSbF ₆ ·CH ₃ CN	$Pd_2(dba)_3$	62
5	PPh ₃ AuPF ₆	$Pd_2(dba)_3$	73
6	PPh ₃ AuPF ₆	none	0
7	none	$Pd_2(dba)_3$	0
8	$BF_3 \cdot (OMe_2)$	$Pd_2(dba)_3$	25
9	$AgSbF_6$	$Pd_2(dba)_3$	0
10	$PhCO_2H$	$Pd_2(dba)_3$	0
11	PPh ₃ AuCl/AgSbF ₆ (1:1)	$Pd(Pt-Bu_3)_2$	39
12	PPh ₃ AuCl/AgSbF ₆ (1:1)	$(PPh_3)_2PdCl_2$	trace

- •Only Au(I) can effect the reaction, other Lewis acids failed.
- •Weakly coordinating anions are preferred.
- •Ag cation reduces the reaction yield.

Scope of the Reaction

Table 2. Scope of Au- and Pd-Catalyzed Alkyne Stille Reaction^a

$$R^{1}O_{2}C - R^{2} + Bu_{3}SnR^{3} \xrightarrow{20\% PPh_{3}AuPF_{6}} R^{1}O_{2}C R^{2} \ge 95:5 \text{ syn:anti } b = 1.3 - 2.6\% Pd_{2}(dba)_{3} R^{3} = 1.3 - 2.6\% Pd_{2}$$

- •Alkynes were added slowly to the reaction mixture to prevent polymerization.
- •Reactions proceeded with high syn-addition selectivity.
- •Complete regioselectivity is maintained even with *t*-Bu ester.
- •Vinylstannanes reacted with retention of configuration (except Entry 5).

^a Conditions: CH_2Cl_2 , slow addition of alkyne over 6 h, then 24–48 h, 23 °C, 2.0 equiv of stannane. ^b Exception: entry 2, 89:11 syn:anti. ^c With 4.0 equiv of stannane. ^d A ratio of 60:40 syn Z:syn E was isolated.

Further Transformation of the Product

Proposed Mechanism

Scheme 1. Proposed Catalytic Mechanism, Showing Analogy to the Traditional Stille Reaction

Bu₃Sn
$$CO_2R$$
 CO_2R CO_2R CO_2R Au Au Au CO_2R CO_2R

Summary

- Carbostannylation of alkynes was realized with palladium-gold catalysis.
- The reaction proceeded with high regio- and stereo-selectivity.
- The products are synthetically highly versatile.
- Future work: other alkyne substrates?